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Adaptive Particle Filter Approach to Approximate 

Particle Degeneracy 
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Abstract –– The  main problem of particle filter in nonlinear state estimation is the particle degeneracy. It can be overcome by Resampling  

operation. But Resampling operation leads to   the problem of sample impoverishment. Therfoer an algorithm named Variance reduction 

technique is proposed to solve sample impoverishment and   degeneration problem. It reduces the variance of the part icle weights by 

selecting an exponential fading factor and this factor can be chosen adaptively and iteratively in terms of the effective particle number. 

Many improved particle filter algorithms  were proposed to solve the degeneracy problem which are seemed to be complex. In this paper 

an algorithm is presented to show that the idea of  Variance reduction technique is feasible to propose a new adaptive filter ing algorithm.  
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1.INTRODUCTION  

   Particle filter (PF) is a Monte Carlo estimation 
algorithm suitable for the state estimation of nonlinear and/or 
non-Gaussian systems by constructing the posterior 
probability density function via a number of weighted 
particles. It is widely used in target tracking, signal 
processing, image processing and so on.[1-2]. However, PF 
may confront the particle degeneracy. The resampling 
operation solves the degeneration of the particle set to some 
extent, but it leads to the problem of sample impoverishment. 
Therefore, how to deal with the degeneration of the particle 
set effectively is a crucial problem in PF design. For many 
years, much attention has been paid to solve the issue of 
particle degeneration and sample impoverishment. Some 
novel techniques were adopted to solve this problem, and 
many improved algorithms of PF were proposed which 
included regularized particle filter[3], auxiliary particle filters, 
auxiliary extended and auxiliary unscented Kalman particle 
filters [4], genetic particle filter (GPF)[5], risk sensitive particle 
filters (RSPF) [6], and so on. 
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To overcome the sample impoverishment after resampling 
step, the fission bootstrap PF (FBPF)[7] algorithm was 
proposed , in which the preprocessing included weights 
sorting, particle reproducing by fission and weights 
normalizing was inserted before the original resampling step 
as soon as the particle set degenerates severely. However, the 
problems of weights allocation and the number of fissional 
particles were not solved well.Annealed particle filter 
proposed restrained the degeneration by introducing an 
annealing factor but the choice of this factor is somewhat 
complex. 

 In order to solve the degeneracy of the particle set, this paper 
proposes an adaptive PF (APF) algorithm via variance 
reduction technique.After setting a threshold of effective 
particle number and the reduction rate, the fading factor was 
chosen by the variance of importance weights recursively and 
adaptively. A numerical     example was given to show that 
the proposed APF in this paper has better estimation accuracy 
compared with generic particle filter sampling importanceof  
resampling (PF-SIR), generic particle filter (GPF)[8].  In this 
paper , section2 deals with the particle filter and its estimation, 
section 3 deals with the adaptive particle filter and its 
algorithm, section 4 deals with the numerical example based 
on univariate non stationary growth  model, section 5 deals 
about the simulation results by simulating the UNGM[9] 
model equation and last chapter deals with the conclusion. 

Through this papar we use the following notaions: 

K:time step 
Wk :process noise 
Vk :observation noise 
Xk: State vector 
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Yk:Observation vector 
X(n):Input signal  
D(n):Desired signal  
E(n): Error signal 
V(n): Interfering noise 

 

2.PARTICLE FILTER 

The particle filters are also known as Sequential 
Monte Carlo methods (SMC), are sophisticated model 
estimation techniques based on simulation. The particle filter 
aims to estimate the sequence of hidden parameters, xk for 
k = 0,1,2,3,…, based only on the observed data yk for 
k = 0,1,2,3,…. All Bayesian estimates of xk follow from the 
posterior distribution p(xk | y0,y1,…,yk). In contrast, the MCMC 
or importance sampling approach would model the full 
posterior p(x0,x1,…,xk | y0,y1,…,yk).     

Particle methods assume and the observations can be 

modeled in this form: is a first order Markov 

process such that and with an initial distribution . 
 

 

 

The observations are conditionally 

independent provided that are known. In other 

words, each only depends on  
 

 
 

One example from this scenario is 

   (1) 

       (2) 

where both and are mutually independent and 
identically distributed sequences with known probability 

density functions and  and  are known functions. 
These two equations can be viewed as state space equations 
and look similar to the state space equations for the Kalman 

filter. If the functions   and are linear, and  if  both 
and  are Gaussian, the Kalman filter finds the exact 

Bayesian filtering distribution. If not, Kalman filter based 
methods are a first-order approximation (EKF) or a second-
order approximation (UKF in general, but if probability 
distribution is Gaussian a third-order approximation is 
possible). Particle filters are also an approximation, but with 
enough particles they can be much more accurate. 

 

In the implementation of particle filters, there are three 
important operations: 

1. Generation of particles (sample step), 

2. Computation of the particle weights (importance step), and 

3. Resampling. 

 The first two steps form the particle filter called 
Sequential      Importance Sampling (SIS) filter. The filter  that 
performs all three operations is called Sample Importance 
Resampling Filter(SIRF). 

 The particle filter is a useful tool to perform dynamic 
state estimation via Bayesian inference. It provides great 
efficiency and extreme flexibility to approximate any 
functional nonlinearity. The key idea is to use samples, also 
called particles, to represent the posterior distribution of the 
state given a sequence of sensor measurements. As new 
information arrives, these particles are constantly re-allocated 
to update the estimation of the state of the system. The 
efficiency and accuracy of the particle filter depends mainly 
on two key factors: the number of particles used to estimate 
the posterior distribution and the propagation function used 
to re-allocate these particles at each iteration. The standard 
implementation of the filter specifies both factors beforehand 
and keeps them fixed during the entire operation of the filter.  

3.ADAPTIVE PARTICLE FILTER 

An adaptive filter is a filter that self-adjusts its 
transfer function. The optimization algorithms is so complex  
that adaptive filters are used as digital filters. This  is required 
for some applications where parameters of the desired 
processing operation are not known in advance. The adaptive 
filter uses feedback in the form of an error signal. The particle 
filter has emerged as a useful tool for problems requiring 
dynamic state estimation. The efficiency and accuracy of the 
filter depend mostly on the number of particles used in the 
estimation and on the propagation function used to re-allocate 
these particles at each iteration. Both features are specified 
beforehand and are kept fixed in the regular implementation 
of the filter. In practice this may be highly inappropriate since 
it ignores errors in the models and the varying dynamics of 
the processes. 

This work presents a self adaptive version of the 
particle filter that uses statistical methods to adapt the number 
of particles and the propagation function at each iteration. 
Furthermore, our method presents similar computational load 
than the standard particle filter.  

In this paper, we present a self adaptive particle filter 
that shown in Figure 1 uses statistical methods to select an  
appropriate number of particles and a suitable propagation 
function at each iteration. In this,after setting a threshold of 

http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Estimation
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Markov_process
http://en.wikipedia.org/wiki/Markov_process
http://en.wikipedia.org/wiki/Markov_process
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/State_space_%28controls%29
http://en.wikipedia.org/wiki/Gaussian
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 effective particle number  and the reduction rate ,the fading 
factor was chosen by the variance of importance weights 
recursively  and adaptively. 

Variance reduction is always realized by introducing the 
correlation into the sample set. Here we adopt an  idea of 
variance reduction to achieve the aim of reducing the weights 
variance of particles 

 

   Figure 1. Adaptive filter structure 

The input signal x(n) is the sum of a desired signal d(n) and     
interfering noise v(n) 

                                                    (3) 

The variable filter has a Finite Impulse Response 
(FIR) structure. For such structures the impulse response is 
equal to the filter coefficients. The coefficients for a filter of 
order  are defined as 

.          (4) 

The error signal or cost function is the difference between the 
desired and the estimated signal 

            (5) 

The variable filter estimates the desired signal by convolving 
the input signal with the impulse response. In vector notation 
this is expressed as 
 

                       (6) 

Where 
 

                     (7) 

is an input signal vector. Moreover, the variable filter updates 
the filter coefficients at every time instant 
 

                                 (8) 

Where the parameter   is a correction factor for the 
filter coefficients. The adaptive algorithm generates this 
correction factor based on the input and error signal x(n) 
 

3.1Adaptive Algorithm 

To alleviate the degeneration on particle set, it seems 
necessary to reduce the variance of weights of prior particles.  

Variance reduction of weights 

Variance reduction is always realized by introducing the 
correlation into sample set. For PF, the principles of reducing 
the weights variance should be as follows 

1) For the particle having relatively high weights, we 
decrease their weights. 

2) For the particle having relatively low weights, we 
increase their weights. 

        3)    Keep the original order of all particle weights 
remaining unchanged, i.e. keep a higher weight to be higher 
and a lower weight to be lower. 

The above proposed theorem subsequently provides 
powerful evidence that a small (larger than 0 and over smaller 
than 1) exponent factor to all weights can decrease the weights 
variance of particles, i.e., increase the effective particle 
number. And,the smaller the exponent factor is the larger the 
effective particle  number.  

Step 1: 

Select the parameter that determines the rate of 
variance reduction at each time k and set a threshold Nthr for 
effective particle number, let  t=n-1,wk

0=wk 

Step 2: 

Compute the effective particle number Neff 

Step 3: 

While Neff<Nthrα=t/n,wk=(wk
0)α,t=t-1 

Step 4: 

 Normalize the weight for each particle 

wk
-i=wk

i/∑wk
j  

Step 5: 

Estimate the state  

X k  =Σ wk
–ixk

i  

 

http://en.wikipedia.org/wiki/Finite_impulse_response
http://en.wikipedia.org/wiki/Finite_impulse_response
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Step 6: 

Estimate the covariance Pk =Σ(xi
k − xk) ˜ wi

k(xi
k − xk)T  

Step 7: 

Draw new particles xk
i~N(xk

i,pk),and set {wk
-i=1/N}N 

 

4.UNIVARIATE NON-STATIONARY GROWTH 
   MODEL AND RESULTS 
 

To illustrate some of the advantages of APF over PF  
,Let us  now consider an example[10-11], in which we estimate 
a model called Univariate  Nonstationary Growth Model 
(UNGM), which is previously used as benchmark .what 
makes this model particularly interesting in this case is that its 
highly nonlinear and bimodal, so it is really challenging for 
traditional filtering techniques. The dynamic state space 
model for UNGM can be written as 

                  (9) 

The cosine term in the state transition equation simulates the 
effect of time-varying noise. From Eq no.9 ,we choose 
α=0.5,β=25,γ=8. 

For N=100  Particles,the root mean square error(RMSE) curves 
of the  estimated  results are 11.1394(particle filter) and 

2.8254(Adaptive particle filter) Fig. 2 and Table 1 shows  that 
APF has higher accuracy than particle filter in the estimation 
of this nonlinear system with  non-Gaussian noise. 
 
                                                 (a) 
      Fig.2.  (a) Estimation of  Adaptive pdf.            

(b)  Estimation of  Particle filter.   

(c)  Estimation of  Adaptive Particle filter.   

(d) Resample of  Adaptive Particle filter.  

 

 

                                               (b) 

 

                                     (c) 

 

                                                 (d) 



International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012                                                                                         5 
ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org 

 

By simulating the state transition equation of adaptive particle 
filter based on univariate non-stationary growth model,we 
obtain the results which is shown in Figure2 and the RMSE  
value of particle filter and adaptive particle filter are shown in 
the Table 1 

  
Table 1 RMSE Performance of Two Algorithms 
 

Runs Particle filter Adaptive 
particle filter 

100  11.1394 2.8254 

200 21.9882 9.0909 

300 11.0651 3.4106 

500 18.1648 2.3371 

 
 
 

5. CONCLUSION  

In this paper, we  have  developed an Adaptive 
particle filter that overcomes the major problem of particle 
degeneracy. Here we have   adopted   the idea of   resampling 
operation to overcome the problem of particle degeneracy but 
it leads to the problem of sample impoverishment. So we 
proposed an algorithm   based on variance reduction   
technique which reduces the variance of the particles. It 
overcomes both the problem and  produce the particle with 
more accuracy compared   to the prior methods.More 
experiments are necessary in order to validate the algorithm. 
Further improvements of the algorithm are necessary to 
reduce error completely. 
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